Analysis and Applications of the Heterogeneous Multiscale Methods for Multiscale Elliptic and Hyperbolic Partial Differential Equations
نویسنده
چکیده
This thesis concerns the applications and analysis of the Heterogeneous Multiscale methods (HMM) for Multiscale Elliptic and Hyperbolic Partial Differential Equations. We have gathered the main contributions in two papers. The first paper deals with the cell-boundary error which is present in multi-scale algorithms for elliptic homogenization problems. Typical multiscale methods have two essential components: a macro and a micro model. The micro model is used to upscale parameter values which are missing in the macro model. Solving the micro model requires, on the other hand, imposing boundary conditions on the boundary of the microscopic domain. Imposing a naive boundary condition leads to O(ε/η) error in the computation, where ε is the size of the microscopic variations in the media and η is the size of the micro-domain. Until now, strategies were proposed to improve the convergence rate up to fourth-order in ε/η at best. However, the removal of this error in multi-scale algorithms still remains an important open problem. In this paper, we present an approach with a time-dependent model which is general in terms of dimension. With this approach we are able to obtain O((ε/η)) and O((ε/η) + η) convergence rates in periodic and locally-periodic media respectively, where p, q can be chosen arbitrarily large. In the second paper, we analyze a multi-scale method developed under the Heterogeneous Multi-Scale Methods (HMM) framework for numerical approximation of wave propagation problems in periodic media. In particular, we are interested in the long time O(ε−2) wave propagation. In the method, the microscopic model uses the macro solutions as initial data. In short-time wave propagation problems a linear interpolant of the macro variables can be used as the initial data for the micro-model. However, in long-time multi-scale wave problems the linear data does not suffice and one has to use a thirddegree interpolant of the coarse data to capture the O(1) dispersive effects apperaing in the long time. In this paper, we prove that through using an initial data consistent with the current macro state, HMM captures this dispersive effects up to any desired order of accuracy in terms of ε/η. We use two new ideas, namely quasi-polynomial solutions of periodic problems and local time averages of solutions of periodic hyperbolic PDEs. As a byproduct, these ideas naturally reveal the role of consistency for high accuracy approximation of homogenized quantities.
منابع مشابه
Adjoint consistency analysis of residual-based variational multiscale methods
We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems.
متن کاملAnalysis and Applications of Heterogeneous Multiscale Methods for Multiscale Partial Differential Equations
This thesis centers on the development and analysis of numerical multiscale methods for multiscale problems arising in steady heat conduction, heat transfer and wave propagation in heterogeneous media. In a multiscale problem several scales interact with each other to form a system which has variations over a wide range of scales. A direct numerical simulation of such problems requires resolvin...
متن کاملThe Finite Element Heterogeneous Multiscale Method: a computational strategy for multiscale PDEs
Heterogeneous multiscale methods (HMM) have been introduced by E and Engquist [Commun. Math. Sci. 1 (2003), pp. 87-132] as a general methodology for the numerical computation of problems with multiple scales. In this paper we discuss finite element methods based on the HMM for multiscale partial differential equations (PDEs). We give numerous examples of such multiscale problems, including elli...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملA Finite Element Heterogeneous Multiscale Method with Improved Control over the Modeling Error
Multiscale partial differential equations (PDEs) are difficult to solve by traditional numerical methods due to the need to resolve the small wavelengths in the media over the entire computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method (FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic, and hyperbolic type. Typ...
متن کامل